5,697 research outputs found

    Fuzzy logic as a decision-making support system for the indication of bariatric surgery based on an index (OBESINDEX) generated by the association between body fat and body mass index

    Get PDF
    Background: A Fuzzy Obesity Index (OBESINDEX) for use as an alternative in bariatric surgery indication (BSI) is presented. The search for a more accurate method to evaluate obesity and to indicate a better treatment is important in the world health context. BMI (body mass index) is considered the main criteria for obesity treatment and BSI. Nevertheless, the fat excess related to the percentage of Body Fat (%BF) is actually the principal harmful factor in obesity disease that is usually neglected. This paper presents a new fuzzy mechanism for evaluating obesity by associating BMI with %BF that yields a fuzzy obesity index for obesity evaluation and treatment and allows building up a Fuzzy Decision Support System (FDSS) for BSI.

Methods: Seventy-two patients were evaluated for both BMI and %BF. These data are modified and treated as fuzzy sets. Afterwards, the BMI and %BF classes are aggregated yielding a new index (OBESINDEX) for input linguistic variable are considered the BMI and %BF, and as output linguistic variable is employed the OBESINDEX, an obesity classification with entirely new classes of obesity in the fuzzy context as well is used for BSI.

Results: There is a gradual, smooth obesity classification and BSI when using the proposed fuzzy obesity index when compared with other traditional methods for dealing with obesity.

Conclusion: The BMI is not adequate for surgical indication in all the conditions and fuzzy logic becomes an alternative for decision making in bariatric surgery indication based on the OBESINDEX

    Relationship of arterial and exhaled CO2 during elevated artificial pneumoperitoneum pressure for introduction of the first trocar.

    Get PDF
    The present study evaluated the correlation between arterial CO2 and exhaled CO2 during brief high-pressure pneumoperitoneum. Patients were randomly distributed into two groups: P12 group (n=30) received a maximum intraperitoneal pressure of 12mmHg, and P20 group (n=37) received a maximum intraperitoneal pressure of 20mmHg. Arterial CO2 was evaluated by radial arterial catheter and exhaled CO2 was measured by capnometry at the following time points: before insufflation, once intraperitoneal pressure reached 12mmHg , 5 minutes after intraperitoneal pressure reached 12mmHg for the P12 group or 20mmHg for the P20 group, and 10 minutes after intraperitoneal pressure reached 12mmHg for the P12 group or when intraperitoneal pressure had decreased from 20mmHg to 12mmHg, for the P20 group. During brief durations of very high intraperitoneal pressure (20mmHg), there was a strong correlation between arterial CO2 and exhaled CO2. Capnometry can be effectively used to monitor patients during transient increases in artificial pneumoperitoneum pressure

    Protocolo para criopreservação do sêmen de tambaqui (Colossoma macropomum).

    Get PDF
    bitstream/item/39781/1/cot-112.pd

    Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures

    Get PDF
    A study of the gas pressure effect in the position resolution of an interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic position resolution for pure noble gases (Argon and Xenon) and their mixtures with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for photon energies between 5.4 and 60.0 keV, being possible to establish a linear match between the intrinsic position resolution and the inverse of the gas pressure in that energy range. In order to evaluate the quality of the method here described, a comparison between the available experimental data and the calculated one in this work, is done and discussed. In the majority of the cases, a strong agreement is observed

    A dynamic method for charging-up calculations: the case of GEM

    Full text link
    The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is an important and powerful tool for the design and optimization of such detectors. However, several attempts to simulate exactly the effective charge gain have not been completely successful. Namely, the gain stability over time has not been fully understood. Charging-up of the insulator surfaces have been pointed as one of the responsible for the difference between experimental and Monte Carlo results. This work describes two iterative methods to simulate the charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first method uses a constant step for avalanches time evolution, very detailed, but slower to compute. The second method uses a dynamic step that improves the computing time. Good agreement between both methods was reached. Despite of comparison with experimental results shows that charging-up plays an important role in detectors operation, should not be the only responsible for the difference between simulated and measured effective gain, but explains the time evolution in the effective gain.Comment: Minor changes in grammatical statements and inclusion of some important information about experimental setup at section "Comparison with experimental results

    Simulation of gain stability of THGEM gas-avalanche particle detectors

    Full text link
    Charging-up processes affecting gain stability in Thick Gas Electron Multipliers (THGEM) were studied with a dedicated simulation toolkit. Integrated with Garfield++, it provides an effective platform for systematic phenomenological studies of charging-up processes in MPGD detectors. We describe the simulation tool and the fine-tuning of the step-size required for the algorithm convergence, in relation to physical parameters. Simulation results of gain stability over time in THGEM detectors are presented, exploring the role of electrode-thickness and applied voltage on its evolution. The results show that the total amount of irradiated charge through electrode's hole needed for reaching gain stabilization is in the range of tens to hundreds of pC, depending on the detector geometry and operational voltage. These results are in agreement with experimental observations presented previously

    Estratégias para o estabelecimento e manutenção de áreas livres e de baixa prevalência de moscas-das-frutas.

    Get PDF
    Determinação de uma área livre de Moscas-das-Frutas (ALMF); Metas do programa; Procedimentos para a implantação de uma ALMF; Escolha da éspecie-alvo; Seleção dos Municípios e cadastro dos produtores da região; Delimitação da faixa de proteção permanente (Área Tampão); Estrutura organizacional; Monitoramento populacional da praga; Atividades de campo; Interpretação dos dados de captura; Plano de contigência; Preparação e envio de relatórios; Criação de decreto estadual; Estabelecimento de barreiras zoofitossanitárias; Procedimentos para a manutenção de uma área livre de pragas; Medidas fitossanitárias.bitstream/CNPAT-2010/9619/1/Ci-022.pd
    corecore